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Question 1.(38 points) Circle the correct answer:
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Diverges by direct comparison with f




(5) The series ) %
n=2

(a ’Diverges by nth term test.
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(d) Converges by integral test.

Converges by ratio test.

Diverges by ratio test.
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(a) Converges by nth term test.
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Diverges by nth term test.
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(d) Diverges by root test.

’Converges by root test.
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(7) The series nz:; VT

(a) ’Converges conditionally.
(b)
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(d) None of the above.

Converges absolutely.

Diverges.

(a) Converges by limit comparison test with > +

n=1

(b) |Diverges by limit comparison test with %
n=1

(c¢) Converges by ratio test.
(d) Diverges by ratio test.
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The error in the approximation cosx ~ 1 — %,
series estimation theorem will be less than
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The sequence a,, = (2" + 3™)1/»
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The nth partial sum of the series ) m
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The series 21 E;;l);,
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(a) ’Converges by ratio test.

(b)

(c) Converges by integral test.
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Diverges by ratio test.

(d) Diverges by nth term test.

|z] < 0.1 using the alternating



(15) The series Y (Inx)™

(a
(b
(c
(d

Converges for all x
Converges for —1 <z <1

Converges for —e < x < e
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Converges for e™! <z < e

(16) The Maclaurin series generated by the function f(z) = 2" is
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(17) The binomial series generated by the function f(z) = (1 + x)~ /% is
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(b) Converges by limit comparison test with Y>> 2
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(c) | Diverges by limit comparison test with Z
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19) The Maclaurin series generated by % —L s
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Question 2(12 points) Find the interval and radius of convergence of the series

annn

n=2

Give full details.

Applying the ratio test, we have

|| nin’n " n In*n Sl (2 points)
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The series converges absolutely if |z| < 1 and diverges if |z| > 1. (1 point)
If x =1, then we get the series
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We apply the integral test

*  dx ) ¢ dx -1
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zln’z  aweo )y zln’z  avocolnz

¢ 1 1 1
= lim <—— + —) = — (2 points)

y @00 Ina In2 In2

Therefore, the series converges at x = 1 by integral test.(1 point)

If x = —1, we have the series

p— nln®n

We apply the alternating series test:

® u, = > 0 (1 point)

nln n

® Uyl = m < Uy = nln - (1 pOlIlt)

® u,=—» —0asn— oo (1 point)

nln n

So, the series converges by alternating series test at + = —1 (1 point)
Interval of convergence —1 < z <1 (1 point)

Radius of convergence R =1 (1 point)
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Question 3(10 points) Given that 7 =1 —t+t* =7+, -1 <t < 1.

(a) Find the Maclaurin series of the function #

1

1+ t2 =1-t>+t* -t +t>—t'%... (2 points)

(b) Use (a) and integration to find the Maclaurin series of tan™' .

X 1 X
/ / (1—t®>+t* =t +t° -t 4. )dx
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1 t3 5 t7  t°  xM :
tan "t = |t— S+ -5+ +
|0 ( 3+5 7+9 11+ 0
x3 x® x’ x?
tan_lxzx__+___+__... (3p01nts)

3 5 7 9
(c) Use (b) to approximate fol @d:ﬂ with an error of magnitude less than 0.01.

1 2 .174 6 113’8 .CEIO

tan™" x T T
—l- 4+ 4 T _4... (2point
z s s 7t t (2 points)
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tan™ " x x x T x x
dor = l- = =4+ == —+--- |d
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3 0 27 29 211 1
T Tt e 1 T,
—amty oL L (2 points)
T T 9795 49 81 121 pOIES
Therefore,

/1tan—1a;d . 1+ 1 1 N 1 (1 point)
r~l——4+ ———+ — oin
- 925 49 8 P

Using alternating series estimation theorem,
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